
A U.S. Department of Energy
Office of Science Laboratory
Operated by The University of Chicago

Argonne National Laboratory

Office of Science
U.S. Department of Energy

Programming EPICS with
PERL

Mohan Ramanathan
October 12, 2004

Part of the EPICS “Getting Started” Lecture Series

2

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Outline

• History
• Quick Overview of Perl
• EPICS Overview
• Channel Access (EZCA)
• Perl interface to EZCA
• Perl Applications
• Current and Future
• Conclusions
• Acknowledgments

3

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

History

• Perl is an easy language for WEB programming (CGI)
Needed an easy to program , yet powerful language to write
code to interface to CA, SDDS and for writing CGI interface

• Object oriented
• Easy to interface to other languages like C, C++, java etc..

• Preexisting objects modules are available in abundance
http://www.cpan.org

• Perl is free!
• Great support and free!

4

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

History
• Why Perl?

Back in 1995/96 was looking for a language to use for various
applications
C was too cumbersome
Needed a quick and easy to use, yet a powerful language
Tcl/Tk was used at APS but was not properly suited for the
applications I was interested in (mainly WEB interface)
Easy to learn !!
Perl has simple constructs and looks similar to C
Numerous modules available in CPAN for graphics and GUI
pTK was already available for Perl in 1996
Interpreter based language means no compilation
Full programs can be generated easily with Perl

• Perl EZCA module was born in 1996

5

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Quick Overview of Perl
• A high-level interpreted programming language
• Modern programming language

Data Structures
Control Structures
Regular Expressions
Object Oriented

• Perl handles both strings and numbers elegantly
Excellent for manipulation of both strings and numbers
Most string and arithmetic operators are similar to C
All operators and most functions work on scalar or array data of
any type

• Multi-platform support
Unix, Linux, Windows, etc..

6

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Quick Overview of Perl
• Data types

Scalars need no assignment. Internally all scalars are assigned to
double. However for users it takes the form of the data it holds
Arrays can be multi-dimensional. However internally it is only one
dimension

• Variable Names
All scalars start with $
All arrays start with @
All hash reference start with %

• Has special variables and arrays like $_, @_, @ARGV, %ENV, etc..
• User has a choice of (not) using special cryptic variables !!
• Memory allocation is dynamic – will use up all memory when

needed !

7

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Quick Overview of Perl - Operators
• Binary and String Operators

$a = 123; $b = 456;
$c = 3;
print $a + $b; # prints 579 (addition)
print $a . $b; # prints 123456 (concatenation)
print $a x $c; # prints 123123123 (repeat)

• Logical Operators
$a && $b # $a if $a is false, $b otherwise
! $a # True if $a is not true

• Numeric and String Comparison Operators
$a == $b # True if $a is equal to $b (numeric)
$a eq $b # True if $a is equal to $b (string)

• File Test Operators
-e $a # True if file named in $a exists

8

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Quick Overview of Perl - Control
• if and unless statements

if ($level < 0) {
print "Level is below Zero \n";

}
print "City is not New York \n" unless ($city eq "New York");

• while and until statements
while ($level < 100) {

$level++;
print "level value is $level\n";

}
until ($level == 0) {

$level--;
print "level value is $level\n";

}

9

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Quick Overview of Perl - Control
• for statements

for ($level =0; $level <100; $level++) {
print "level value is $level\n";

}

• foreach statements
foreach $user (@users) {

print "$user is ok\n";
}

• next
foreach $user (@users) {

next unless ($user eq "jack");
}

• last
foreach $user (@users) {

last if ($user eq "jack");
}

10

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

EPICS Overview

MEDM MEDM Client Client Perl Client

Server IOC IOC

Server
Client

Meter Power Supply Camera

IOC

Channel Access

•PV Gateway

11

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Channel Access (EZCA)
EPICS extension for “E-Z (Easy) Channel Access”

• EZCA provides a simplified interface to Channel Access, which
is useful for some C programs which do not need all the
capabilities of the full API

• Don’t need to handle chids, just use PV name strings – hash
table

• Synchronous APIs - applications don’t have to handle
callbacks

• Has only 25 routines to handle synchronous groups,
individual requests and easy error handling

12

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Interface to EZCA
Description

• EZCA.pm is a Perl interface to EPICS EZCA library
• The routine names are based on EZCA nomenclature
• Each routine name in EZCA has an equivalent in Perl module
• All the commands are similar to what is used in EZCA
• Data types as described in EZCA (ezcatype) are used

ezcaByte
ezcaString
ezcaShort
ezcaLong
ezcaFloat
ezcaDouble

13

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Interface to EZCA
Return Codes

• Most function calls return status codes indicating the
success/failure of the call

• Following are the return codes
EZCA_OK
EZCA_INVALIDARG
EZCA_FAILEDMALLOC
EZCA_CAFAILURE
EZCA_UDFREG
EZCA_NOTCONNECTED
EZCA_NOTIMELYRESPONSE
EZCA_INGROUP
EZCA_NOTINGROUP

14

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Interface to EZCA
Work in Progress

• Most functions with the exception of the Group function have
been implemented and tested

21 of the 25 functions are working

• All functions involving arrays have a limitation of 2000
elements

• In the case of PV Put at this time only one element is possible

15

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Interface to EZCA
Main Functions

• @data = EZCA::Get($pvname,"ezcatype",$no_elem)

Retrieves values from $pvname and the data type is specified as ezcatype
The return status code is stored in $data[0] and the retrieved values are in the
rest of the array starting at elements $data[1]
At this time the no of elements $no_elem is limited to 2000

• $status = EZCA::Put($pvname,"ezcatype",$no_elem,$data)

Write values into $pvname.
The value is send in $data and the data type is specified as ezcatype.
The return status code is $status
At this time the no of elements $no_elem is limited to 1

• EZCA::GetStatus($pvname,$tstamp,$tnstamp,$status,$severity)

Retrieves various information about the said $pvname.
The time in seconds is in $tstamp and in nanoseconds is in $tnstamp.
The $status and $severity returns status and the severity of the process variable

16

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Interface to EZCA
Associated Functions

• $status = EZCA::GetNelem($pvname,$nelem)

The number of elements in the $pvname is returned in $nelem.

• $status = EZCA::GetPrecision($pvname,$prec)
The precision for the $pvname is returned in $prec.

• $status = EZCA::GetUnits($pvname,$unit)
This returns the Engineering Unit field of the $pvname in $unit.

• $status = EZCA::GetControlLimits($pvname, $low, $high)

Retrieve the Control Limits values in $low and $high.

• $status = EZCA::GetGraphicLimits($pvname, $low, $high)

Retrieve the Graphics Limits values in $low and $high.

17

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Interface to EZCA
Monitors

• $status = EZCA::SetMonitor($pvname,"ezcatype")

Used to set a monitor on the $pvname.

• $status = EZCA::ClearMonitor($pvname,"ezcatype")

Used to clear any monitors placed on the $pvname.

• $mon = EZCA::NewMonitorValue($pvname,"ezcatype")

Use this function to poll for new values on a previously set monitor.
A non zero return value in $mon indicates a new value since the last time the value
was read via a Get

• $status = EZCA::Delay($seconds)

Use to introduce delays between calls.
The time $seconds is in seconds. Fractional time are allowed.

18

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Interface to EZCA
Error Handling

• EZCA::AutoErrorMessageOn()

Turn ON the EZCA error messages to be printed on the stdout.

• EZCA::AutoErrorMessageOff()

Turn OFF the EZCA error messages to be printed on the stdout.

• EZCA::Perror($prefix)

Use this to optionally add a prefix message to the EZCA error message.

• EZCA::GetErrorString(NULL, $stringBuff)

Retrieve the EZCA error message in the $stringBuff instead of stdout.

• EZCA::Free($stringBuff)

Use this to free up the $stringBuff used in the above call.

19

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Interface to EZCA
Tuning EZCA

• $seconds = EZCA::GetTimeout()

Retrieve the current CA timeout value in seconds

• $number = EZCA::GetRetryCount()

Retrieve the current CA number of retries.

• $status = EZCA::SetTimeout($seconds)

Set the current CA timeout value in seconds. $status is the return status

• $status = EZCA::SetRetryCount($number)

Set the CA number of retries. $status is the return status

20

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Applications
•Use EZCA and GD modules to generate images every minute for WEB
#!/usr/bin/perl
##
Program to retrieve the data from EPICS and generate
png files of Storage ring history.
##
use Time::CTime; # load Time module for manipulating time
use EZCA; # load EZCA module
use GD; # load GD graphics module
use File::Copy; # load File handling modules

$ENV{'EPICS_CA_AUTO_ADDR_LIST'} = 'NO';
$ENV{'EPICS_CA_ADDR_LIST'} = "164.54.188.65"; #environment for Rhea gateway

$epoch = 631152000; # this is the difference between EPOCHS

$nfont = "/usr/openwin/lib/X11/fonts/TrueType/Arial.ttf";
$bfont = "/usr/openwin/lib/X11/fonts/TrueType/Arial-Bold.ttf";
$bifont = "/usr/openwin/lib/X11/fonts/TrueType/Arial-BoldItalic.ttf";

$smallfile = "/Public/aod/blops/plots/smallStatusPlot.png";
$tempfile = "/Public/aod/blops/plots/statusPlot.png";
$pdajpgfile = "/Public/aod/blops/plots/tinyStatusPlot.jpg";

•For PV
Gateway

21

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Applications

•EZCA::AutoErrorMessageOff(); # Turn off error messages to STDOUT
•EZCA::SetTimeout(0.01); # Fine Tune EZCA
•EZCA::SetRetryCount(10); # Fine tune EZCA
•# setup monitor to trigger whenever this changes....
•$val = EZCA::SetMonitor("S:SRdateCP","ezcaLong");
•$val = EZCA::NewMonitorValue("S:SRdateCP","ezcaLong");
•@pvvalues = EZCA::Get("S:SRdateCP","ezcaLong",1440);
•EZCA::Delay(2.0); # Wait 2.0 seconds
•# wait for the monitor to trigger action. happens every minute.
•while(1) {
• $status = EZCA::NewMonitorValue("S:SRdateCP","ezcaLong");
• if ($status) {
• &getPV; # to retrieve the PVs
• &generateImage; # generate the Images
• &generateHtml; # generate the Html file
• }
• EZCA::Delay(5.0); # Wait 5.0 seconds before polling
•}
•exit;

•Use EZCA and GD modules to generate images every minute for WEB

•Important!
Performance

Issue

Need to poll
this only

22

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Applications
•Use EZCA and GD modules to generate images every minute for WEB

•sub getPV {
•# get the current status of storage ring ...
• @pvvalues = EZCA::Get("S:IOC:timeOfDayForm1SI","ezcaString",1);
• $lastUpdate =$pvvalues[1];
• @pvvalues = EZCA::Get("XFD:srCurrent","ezcaFloat",1);

$current = sprintf("%6.1f mA", $pvvalues[1]);
• @pvvalues = EZCA::Get("XFD:FillNumber","ezcaShort",1);
• $fill_no= sprintf ("%4d", $pvvalues[1]);
•# get the time and current 24 hr data arrays ...
• @timearray = EZCA::Get("S:SRdateCP","ezcaShort",1440);
• shift @timearray;
• @userarray = EZCA::Get("S:UserOpsCurrent","ezcaFloat",1440);
• shift @userarray;
•# Find the time from the last data point and adjust for epoch ...
• $curtime = $timearray[$#timearray]+$epoch;
• $curhour = strftime("%H",localtime($curtime));
• $curmin = strftime("%M",localtime($curtime));

Difference
between EPICS

& UNIX EPOCHS

23

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Applications
•Use EZCA and GD modules to generate images every minute for WEB

•sub generateImage {
•# Initiallize the size of the image...
• $timage = new GD::Image (360, 340);

•# Allocate colors ...
• $twhite = $timage->colorAllocate (255,255,255);
• $tgreen = $timage->colorAllocate (0,170,0);
• $tblue = $timage->colorAllocate (0,0,255);

•# Define the origin of the plot (0,0) of the image is the top left corner
• @torigin = (40,290);

•# Generate the heading for the plot ..
• $timage ->stringTTF ($tblack,$bfont,10,0, 190,49,"Active Beamlines :");
•
•# Generate the heading for the plot ..
• open (IMGFILE, ">$tempfile");
• print IMGFILE $timage->png;
• close IMGFILE;

24

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Applications
•Use EZCA and GD modules to generate images every minute for WEB

25

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Applications
•Example of writing to an EPICS process variable …

•#!/usr/bin/perl
•##
•# Program to scan the Undulator from Closed gap to Open gap
•# and collect the encoder values at fixed gaps.
•###

•use Time::CTime; # Module needed to format time is fancy formats
•use EZCA; # Loads the EZCA.pm module
•use English; # this is to use $UID instead of $<
•use Sys::Hostname; # to get access to system variables
• .

.
•while (abs($gap-$cgap) > 0.020) {
• $status = 1;
• until ($status == 0) {
• $status = EZCA::Put("ID$sector:ScanGap","ezcaFloat",1,$gap);
• EZCA::Delay(0.05);
• }

26

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Applications
Example of a program using SDDS and GD module
#!/usr/bin/perl
##
Program to read the data files and generate a large gif file
of Storage ring history for the past 7 days.
##

$dir = "/home/helios/XFDOPS/monitoring/shutter";
$tempfile = "/home/helios/xfdsys/monitoring/tempfiles/weektemp.sdds";
$pngfile2 = "/net/epics/Public/aod/blops/plots/WeekHistory.png";

use Time::CTime;
use SDDS;
use File::Copy;
use GD;

get the current time and the time 7 days ago
then get it nearest 0, 15, 30 or 45 minute interval.

$curtime = time;

$curmin = strftime("%M",localtime($curtime));
$cursec = strftime("%S",localtime($curtime));

27

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Applications
•Use SDDS and GD modules to generate this image for WEB

28

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Perl Applications
•Use SDDS and GD modules to generate this image for WEB

29

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Current and Future

• In use for over 8 years by numerous people in APS and others.
Easy to develop quick applications.

• With the CA and other available Perl modules it is possible to
create complex applications for the EPICS environment.

• Needs additional work in Linux port (bug fixes)
• Needs to be ported and tested with EPICS R3.14

• Built and test in Windows environment
• Interface directly to portable CA instead of EZCA

30

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Conclusions
How to get the Software

• Documentation available
http://www.aps.anl.gov/aod/people/mohan/EZCA/EZCA.html

• Installation packages for Solaris and Linux
• Source code available
• Requires EPICS libraries
• The software is available as gzipped tarfiles

http://www.aps.anl.gov/aod/people/mohan/EZCA/solEZCA.tar.gz
http://www.aps.anl.gov/aod/people/mohan/EZCA/linuxEZCA.tar.gz

• For building it standalone, some of the EPICS include files and
libraries are provided. These were build on Sun Solaris and
Linux platforms

31

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Acknowledgements

• Karl Glazebrook the developer of PGPERL, the perl interface to
PGPLOT for the help in dealing with arrays.

• Marty Kraimer for his help during the development days.

32

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Final Note

What is PERL?

Practical Extraction and Report Language

OR

Pathologically Eclectic Rubbish Lister

	Programming EPICS with PERL
	Outline
	History
	History
	Quick Overview of Perl
	Quick Overview of Perl
	Quick Overview of Perl - Operators
	Quick Overview of Perl - Control
	Quick Overview of Perl - Control
	EPICS Overview
	Channel Access (EZCA)
	Perl Interface to EZCA
	Perl Interface to EZCA
	Perl Interface to EZCA
	Perl Interface to EZCA
	Perl Interface to EZCA
	Perl Interface to EZCA
	Perl Interface to EZCA
	Perl Interface to EZCA
	Perl Applications
	Perl Applications
	Perl Applications
	Perl Applications
	Perl Applications
	Perl Applications
	Perl Applications
	Perl Applications
	Perl Applications
	Current and Future
	Conclusions
	Acknowledgements
	Final Note

